«Лезвие Эйнштейна» в «Бритве Оккама» - «Эзотерика» » Женский блог о жизни.
По теме
Денежная магия
О действии приворота Проведение ритуалов Любовные привороты Любовные заговоры Противолюбовные заговоры Методы снятия приворота Магические приёмы, помогающие вернуть любовь Вызовы(чтобы человек к вам явился) Заговоры, чтобы пришла любовь Заговоры на возвращение любви Семейная магия Цыганская любовная магия. Талисманы. Амулеты Любовные ритуалы и заговоры чёрной магии Заговоры на месть сопернице Сексуальная магия Любовная магия по Северным традициям Афро - Карибская магия. Вуду. Сантерия. Привороты Викканская любовная магия Зона любви и брака в вашей квартире Любовная магия Фэн-шуй Фен-шуй для привлечения любви. Любовная ворожба народов мира Магия и красота Приворотные зелья Как приготовить Сексуальные напитки Законы кармы Знаки кармы Молитвы Молитвы к ангелам дней недели Любовь и нумерология. Как правильно выбрать партнера Как разоблачить мерзавца по знаку Зодиака. Романтические приметы Виды Гадания и правила Хиромантия
Реклама на сайте
      

О авторе

Вангелия Пандева Гуштерова

Публикуем различные мнения, статьи и видеоматериалы. Посетителям нашего сайта предоставляем возможность общения на портале – вы можете комментировать публикации и добавлять свои. Приятного общения!


«Лезвие Эйнштейна» в «Бритве Оккама» - «Эзотерика»

Автор - Анисим
Просмотров - 1 266
5-12-2017, 00:11

«Лезвие Эйнштейна» в «Бритве Оккама» - «Эзотерика»В 1971 году, когда я был подростком, мой отец погиб в авиакатастрофе. Волей-неволей я стал становиться «более серьезным», делал первые попытки понять окружающий мир и свое место в нем, искал смысл бытия и постепенно осознавал, что все устроено совсем не так, как я полагал, будучи наивным ребенком.

Так я начал собирать свой собственный «набор когнитивных инструментов»; помню, какую радость я испытывал от открытий, читая взахлеб и поглощая — совсем не в такт с товарищами и школой — одну за другой энциклопедии, философские сочинения, биографии и научную фантастику.

Одну из тех историй я помню до сих пор, особенно вот этот абзац:

«Полагаю, что здесь мы должны применить „меч Тарголы“. Принцип исключения. Сформулирован средневековым философом Тарголой 14-м: „Следует рассечь мечом ту гипотезу, которая не является необходимой“».

Это в самом деле заставило меня задуматься и продолжать думать все дальше и дальше.

Потребовалось некоторое время, чтобы разобраться, кем мог быть этот человек, но это положило начало другой истории — истории любви к библиотекам, большим фолиантам, пыльным переплетам... путешествиям в поисках знания как такового. И я выяснил, что жил-был однажды монах, родом из деревушки, стоявшей среди дубрав, и звали его Уильям Оккам. Наши с ним пути пересеклись снова много лет спустя, когда я читал лекции в Мюнхене, неподалеку от улицы Оккама, и узнал, что монах провел здесь последние двадцать лет своей жизни. Это было во времена короля Людвига IV, в первой половине XIV века.

Айзек Азимов стянул у Оккама (или, скажем так, благоговейно позаимствовал у него) принцип, который ныне называют «бритвой Оккама». Этот принцип известен в нескольких формулировках, однако сводится к следующему:

«Не следует множить сущее без необходимости».

Или, выражаясь не таким афористичным языком:

«Предпочтительным является наиболее простое объяснение, требующее наименьшего количества аргументов».

С тех пор эта игра, это взаимодействие простоты и сложности в самых разных проявлениях неизменно очаровывали меня. Для меня этот принцип был где-то очень близко к центру моего «понимания мира».

Может ли так быть на самом деле, что простой совет «быть проще» всегда представляет собой оптимальную стратегию решения самых разных проблем — как научных, так и личных? Безусловно, стремление избавиться от избыточных допущений может быть полезным основополагающим принципом; и у Сагана, и у Хокинга он входит как составная часть в их метод научного мышления. Но мне все время казалось, что здесь что-то не так. Интуитивно мне было понятно, что иногда вещи на самом деле вовсе не просты, и что самое простое объяснение вовсе не обязательно будет неопровержимой истиной.

• Автор любого детектива считает своим долгом избегать наиболее очевидных ответов на вопросы: «кто это сделал?» и «что произошло?».

• Проектирование автомобиля, водитель которого «будет чувствовать себя совершенно комфортно при входе в поворот на большой скорости», потребует разработки крайне сложных систем, призванных обеспечить это «простое» чувство.

• Вода стекает с холма не по прямой линии, а по извилистой.

Однако «непростое» решение может оказаться «самым простым» с другой точки зрения: что касается воды, то решение затратить минимум энергии при стекании даже с самого пологого холма оказывается важнее, чем решение проложить прямую линию из точки А в точку Б. В этом одна из проблем «бритвы Оккама»: определить, что есть «простое», может оказаться весьма сложной задачей. А определить, что значит «проще», — еще сложнее.

Существует большая разница между «простотой» и «упрощением». И если говорить более абстрактно, то процессы, в результате которых простые вещи ведут к сложности, занимают меня всю мою жизнь.

В начале 1970-х я начал возиться с первыми большими модульными синтезаторами и быстро понял, насколько трудно воссоздать вроде бы самые «простые» звуки. В одной-единственной ноте, взятой на фортепиано, таилась невероятная сложность — сложность, требовавшая десятков осцилляторов и фильтров для разделения частот.

Не так давно один из многих моих проектов был связан с пересмотром эстетической стороны научных визуализаций, а другой — с осязаемым воплощением идеального математического образа: фракталов. Я занимался этим почти двадцать лет назад вместе с программистом-виртуозом Беном Вайсом, а теперь это можно делать в режиме реального времени на обычном смартфоне. Вот самый яркий пример: рекурсивное (самоподобно повторяющееся) использование крошечной формулы, которая едва занимает одну строчку на листке бумаги, позволяет создать целые миры сложных изображений невероятной красоты (Бен имел счастье продемонстрировать альфа-версию Бенуа Мандельброту на конференции TED за несколько месяцев до смерти последнего).

Мои сомнения относительно чрезмерного упрощения превосходно сформулированы в высказывании Альберта Эйнштейна, которое может служить неплохим дополнительным лезвием для «бритвы Оккама»:

«Все следует упрощать до тех пор, пока это возможно, но не более того».

А вот вам и прекрасное приложение к этой истине, которая сама по себе может рассматриваться как рекурсивная формула: ни Эйнштейн, ни Оккама никогда не произносили приписываемых им слов! Я просмотрел десятки книг, собрания сочинений и писем Эйнштейна на немецком, все его архивы, но ни там, ни в Британской энциклопедии, ни в Википедии, ни в Викицитатнике нет точных ссылок на источник. То же самое верно и в отношении Оккама. Если что и можно найти, это всего лишь ссылки на другие ссылки.

Безусловно, можно быстро собрать множество ретвитов, ссылок из одного блога на другой и т. д. — оба эти высказывания давно стали интернет-мемами. Можно предположить, что и Оккам, и Эйнштейн вполне могли сказать нечто подобное, поскольку они действительно не раз выражали похожие мысли. Но приписывать кому-либо точные слова только потому, что он мог сказать нечто похожее... В общем, в этом случае тоже все непросто!

Кроме того, есть большая разница между дополнительной и избыточной информацией (иначе следовало бы вычеркнуть как избыточный второй слог «эйн» в имени «Эйнштейн»).

Впрочем, оставим лингвистические шутки — «бритва Оккама» и «лезвие Эйнштейна» вместе образуют полезный инструмент аналитического мышления. Отказ от излишних предположений — хорошая практика, достойная включения в набор когнитивных инструментов «для всех и каждого». Но не перестарайтесь!

И вот вам напоследок мой собственный афоризм: нет в мире ничего сложнее простоты.
Автор:
Кай Краузе,
программист, дизайнер интерфейсов
Esquire
Цитирование статьи, картинки - фото скриншот - Rambler News Service.
Иллюстрация к статье - Яндекс. Картинки.
Есть вопросы. Напишите нам.
Общие правила  поведения на сайте.

В 1971 году, когда я был подростком, мой отец погиб в авиакатастрофе. Волей-неволей я стал становиться «более серьезным», делал первые попытки понять окружающий мир и свое место в нем, искал смысл бытия и постепенно осознавал, что все устроено совсем не так, как я полагал, будучи наивным ребенком. Так я начал собирать свой собственный «набор когнитивных инструментов»; помню, какую радость я испытывал от открытий, читая взахлеб и поглощая — совсем не в такт с товарищами и школой — одну за другой энциклопедии, философские сочинения, биографии и научную фантастику. Одну из тех историй я помню до сих пор, особенно вот этот абзац: «Полагаю, что здесь мы должны применить „меч Тарголы“. Принцип исключения. Сформулирован средневековым философом Тарголой 14-м: „Следует рассечь мечом ту гипотезу, которая не является необходимой“». Это в самом деле заставило меня задуматься и продолжать думать все дальше и дальше. Потребовалось некоторое время, чтобы разобраться, кем мог быть этот человек, но это положило начало другой истории — истории любви к библиотекам, большим фолиантам, пыльным переплетам. путешествиям в поисках знания как такового. И я выяснил, что жил-был однажды монах, родом из деревушки, стоявшей среди дубрав, и звали его Уильям Оккам. Наши с ним пути пересеклись снова много лет спустя, когда я читал лекции в Мюнхене, неподалеку от улицы Оккама, и узнал, что монах провел здесь последние двадцать лет своей жизни. Это было во времена короля Людвига IV, в первой половине XIV века. Айзек Азимов стянул у Оккама (или, скажем так, благоговейно позаимствовал у него) принцип, который ныне называют «бритвой Оккама». Этот принцип известен в нескольких формулировках, однако сводится к следующему: «Не следует множить сущее без необходимости». Или, выражаясь не таким афористичным языком: «Предпочтительным является наиболее простое объяснение, требующее наименьшего количества аргументов». С тех пор эта игра, это взаимодействие простоты и сложности в самых разных проявлениях неизменно очаровывали меня. Для меня этот принцип был где-то очень близко к центру моего «понимания мира». Может ли так быть на самом деле, что простой совет «быть проще» всегда представляет собой оптимальную стратегию решения самых разных проблем — как научных, так и личных? Безусловно, стремление избавиться от избыточных допущений может быть полезным основополагающим принципом; и у Сагана, и у Хокинга он входит как составная часть в их метод научного мышления. Но мне все время казалось, что здесь что-то не так. Интуитивно мне было понятно, что иногда вещи на самом деле вовсе не просты, и что самое простое объяснение вовсе не обязательно будет неопровержимой истиной. • Автор любого детектива считает своим долгом избегать наиболее очевидных ответов на вопросы: «кто это сделал?» и «что произошло?». • Проектирование автомобиля, водитель которого «будет чувствовать себя совершенно комфортно при входе в поворот на большой скорости», потребует разработки крайне сложных систем, призванных обеспечить это «простое» чувство. • Вода стекает с холма не по прямой линии, а по извилистой. Однако «непростое» решение может оказаться «самым простым» с другой точки зрения: что касается воды, то решение затратить минимум энергии при стекании даже с самого пологого холма оказывается важнее, чем решение проложить прямую линию из точки А в точку Б. В этом одна из проблем «бритвы Оккама»: определить, что есть «простое», может оказаться весьма сложной задачей. А определить, что значит «проще», — еще сложнее. Существует большая разница между «простотой» и «упрощением». И если говорить более абстрактно, то процессы, в результате которых простые вещи ведут к сложности, занимают меня всю мою жизнь. В начале 1970-х я начал возиться с первыми большими модульными синтезаторами и быстро понял, насколько трудно воссоздать вроде бы самые «простые» звуки. В одной-единственной ноте, взятой на фортепиано, таилась невероятная сложность — сложность, требовавшая десятков осцилляторов и фильтров для разделения частот. Не так давно один из многих моих проектов был связан с пересмотром эстетической стороны научных визуализаций, а другой — с осязаемым воплощением идеального математического образа: фракталов. Я занимался этим почти двадцать лет назад вместе с программистом-виртуозом Беном Вайсом, а теперь это можно делать в режиме реального времени на обычном смартфоне. Вот самый яркий пример: рекурсивное (самоподобно повторяющееся) использование крошечной формулы, которая едва занимает одну строчку на листке бумаги, позволяет создать целые миры сложных изображений невероятной красоты (Бен имел счастье продемонстрировать альфа-версию Бенуа Мандельброту на конференции TED за несколько месяцев до смерти последнего). Мои сомнения относительно чрезмерного упрощения превосходно сформулированы в высказывании Альберта Эйнштейна, которое может служить неплохим дополнительным лезвием для «бритвы Оккама»: «Все следует упрощать до тех пор, пока это возможно, но не более того». А вот вам и прекрасное приложение к этой истине, которая сама по себе может рассматриваться как рекурсивная формула: ни Эйнштейн, ни Оккама никогда не произносили приписываемых им слов! Я просмотрел десятки книг, собрания сочинений и писем Эйнштейна на немецком, все его архивы, но ни там, ни в Британской энциклопедии, ни в Википедии, ни в Викицитатнике нет точных ссылок на источник. То же самое верно и в отношении Оккама. Если что и можно найти, это всего лишь ссылки на другие ссылки. Безусловно, можно быстро собрать множество ретвитов, ссылок из одного блога на другой и т. д. — оба эти высказывания давно стали интернет-мемами. Можно предположить, что и Оккам, и Эйнштейн вполне могли сказать нечто подобное, поскольку они действительно не раз выражали похожие мысли. Но приписывать кому-либо точные слова только потому, что он мог сказать нечто похожее. В общем, в этом случае тоже все непросто! Кроме того, есть большая разница между дополнительной и избыточной информацией (иначе следовало бы вычеркнуть как избыточный второй слог «эйн» в имени «Эйнштейн»). Впрочем, оставим лингвистические шутки — «бритва Оккама» и «лезвие Эйнштейна» вместе образуют полезный инструмент аналитического мышления. Отказ от излишних предположений — хорошая практика, достойная включения в набор когнитивных инструментов «для всех и каждого». Но не перестарайтесь! И вот вам напоследок мой собственный афоризм: нет в мире ничего сложнее простоты. Автор: Кай Краузе, программист, дизайнер интерфейсов Esquire
Нашли ошибку?


Автор - Анисим
Просмотров - 1 266

Читайте также:
Эта статья – результат размышлений и краткое ревю на различных
Как соотнести устойчивый запрос человека на духовные ориентиры с
В июле происходит транзит Урана в знак Близнецов, меняется энергия
Многие клиенты приходят на терапию «исцеления отношений», и те, кто
Поиски предназначения привели нас на высшую ступень «животной
Жизнь не бывает «нормальной» или «ненормальной»: она – одна, единая
Каждый год в Великобритании выходит в свет новая обложка, которая
Евангелисты, читая последовательно Новый завет, образуют в воздухе

История пробуждения кундалини - «Эзотерика»

История пробуждения кундалини - «Эзотерика» Это эссе – моя попытка рассказать свою историю пробуждения мистической силы, которая в разных традициях именуется по-разному. В Индии она носит название «кундалини». Я взял псевдоним, потому что информация, которую

Возвращение Домой - «Эзотерика»

Возвращение Домой - «Эзотерика» Познание себя – это естественный процесс, присущий человеку. То, что не развивается, деградирует, разрушается. Т.е. перестает быть. Чтобы этого избежать, живое двигается вперед. На самом деле, куда бы мы ни шли, что бы

Сергей Бобырь: «Кризисы, ошибки и иллюзии на Пути» - «Эзотерика»

Сергей Бобырь: «Кризисы, ошибки и иллюзии на Пути» - «Эзотерика» Текст интервью Сергея Бобыря сохранён, по возможность, максимально близко к оригиналу. - Существует ли идеальный бескризисный путь без ошибок и иллюзий? - Как такового бескризисного пути нет в природе. Как правило, чем

Происхождение религии, магии и мистицизма - «Эзотерика»

Происхождение религии, магии и мистицизма - «Эзотерика» Нам пока еще не известна психологическая и нейрофизиологическая природа феномена, который мы называем интуицией, но он, несомненно, существует. Дуализм интуитивного и аналитического знания присутствует в нашем

Дневник черного монаха. Шанс на бессмертие - «Эзотерика»

Дневник черного монаха. Шанс на бессмертие - «Эзотерика» «Единственный шанс человека на бессмертие ? это изменение собственного времени. За день ты проживаешь неделю, за неделю ? месяцы, за месяц ? годы. Тот, для кого время летит незаметно ? не живет, а спит и видит

Джулиан Джейнс «Сознание и голоса внутри» - «Эзотерика»

Джулиан Джейнс «Сознание и голоса внутри» - «Эзотерика» Американский психолог Джулиан Джейнс (1920 - 1997) начал свою карьеру с традиционной сравнительной психологии и изучал процесс научения и функционирования мозга у многих видов животных - от протозоа и червей до

Добавить комментарий!

Ваше Имя:
Ваш E-Mail:
Код:
Кликните на изображение чтобы обновить код, если он неразборчив
Введите код: